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Abstract The aim of this work is to analyze lexicographic equilibrium problems on a
topological Hausdorff vector space X, and their relationship with some other vector equi-
librium problems. Existence results for the tangled lexicographic problem are proved via
the study of a related sequential problem. This approach was already followed by the same
authors in the case of variational inequalities.
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1 Introduction

The formulation of equilibrium problems is quite general and makes it a versatile tool for
the investigation of various problems arising in pure and applied mathematics, physics, eco-
nomics and operation research. By a scalar equilibrium problem (EP) we understand the
problem of finding x ∈ U such that φ(x, y) ≥ 0, for every y ∈ U, where U is a given set,
and φ : U × U → R. Even though many problems in nonlinear analysis can be regarded as

In this work, the second author was supported in part by RFBR–NNSF Grant No. 07-01-92101.

M. Bianchi
Dipartimento di Discipline Matematiche, Finanza Matematica ed Econometria, Università Cattolica,
Largo Gemelli, 1, 20123 Milano, Italy
e-mail: monica.bianchi@unicatt.it

I. V. Konnov (B)
Department of System Analysis and Information Technologies, Kazan University, ul. Kremlevskaya, 18,
420008 Kazan, Russia
e-mail: konn-igor@yandex.ru; Igor.Konnov@ksu.ru

R. Pini
Dipartimento di Metodi Quantitativi per le Scienze Economiche e Aziendali, Università Milano-Bicocca,
Via Bicocca degli Arcimboldi, 8, 20126 Milano, Italy
e-mail: rita.pini@unimib.it

123



552 J Glob Optim (2010) 46:551–560

particular cases of scalar EP (see, for instance, [1]), the quite recent investigation of vector
problems, such as vector optimization and vector variational inequalities, led to the formu-
lation of vector equilibrium problems that are based on cone orders, among them the Pareto
one. However, from the theory of vector optimization, it is well known that the set of cone
optimal solution points is somehow too large, so that one needs alternative approaches to
refine it. One possibility is to use the lexicographic order, which has been recently investi-
gated in connection with its applications in optimization and decision making theory (see [2]
and the references therein).

This paper is devoted to lexicographic equilibrium problems and their relationship with
some other vector equilibrium problems, in particular, sequential equilibrium problems. This
approach was followed by the same authors in the case of variational inequalities. Indeed, in
[3], they investigated equivalence properties between various kinds of lexicographic prob-
lems and sequential ones. They provided results for the tangled lexicographic problem via
the study of the sequential problem, that admits simpler conditions for existence theorems.

Our aim is to analyze a lexicographic equilibrium problem defined via two bifunctions on
a topological Hausdorff vector space X. In Sect. 2 different vector equilibrium problems are
introduced and their relationships are investigated via generalized concepts of monotonicity.
In Sect. 3, the existence of solutions for LEP is proved in case the lexicographic problem
coincides with or contains the sequential one.

2 Different kinds of equilibrium problems

Let � = (φ1, φ2) : U × U → R
2, where U is a closed convex subset of a topological

Hausdorff vector space X . We assume in the sequel that each φi is an equilibrium bifunction,
i.e., φi (t, t) = 0 for every t ∈ U. For greater convenience, given K ⊆ U, we denote by
EPi (K ) (i = 1, 2) the scalar equilibrium problem: find x ∈ K such that

φi (x, y) ≥ 0, ∀y ∈ K .

We denote by SEPi (K ) the solution set of EPi (K ). A solution x ∈ SEPi (K ) will be called
strict if φi (x, y) > 0, for every y ∈ K , y �= x . Notice that, if φi is pseudomonotone, that is,
for every x, y ∈ U,

φi (x, y) > 0 �⇒ φi (y, x) < 0,

then any strict solution is also the unique solution of EPi (K ).

Let us now consider the following vector equilibrium problems in the space R
2 endowed

with the order relation induced by the Paretian cone:

(weak equilibrium problem) find x ∈ U such that

�(x, y) </ 0, ∀y ∈ U (W-VEP)

(strong equilibrium problem) find x ∈ U such that

�(x, y) ≥ 0, ∀y ∈ U (S-VEP)

(sequential equilibrium problem) find x ∈ U such that

{
φ1(x, y) ≥ 0, ∀y ∈ U
φ2(x, y) ≥ 0, ∀y ∈ U∗

1 = SEP1(U )
(SQ-VEP)
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(lexicographic equilibrium problem) find x ∈ U such that

�(x, y) ≥� 0, ∀y ∈ U (LEP)

where a ≥� 0 means that either a1 > 0 or a1 = 0 and a2 ≥ 0

The set of the solutions of the previous problems in U will be denoted by

SW-VEP(U ), SS-VEP(U ), SSQ-VEP(U ), SLEP(U ),

respectively. It is trivial that

SS-VEP(U ) = SEP1(U ) ∩ SEP2(U ) ⊆ SLEP(U ) ⊆ SW-VEP(U ).

Moreover,

SS-VEP(U ) ⊆ SSQ-VEP(U ) ⊆ SW-VEP(U ).

On the other hand, it is not clear, a priori, what is the relationship between SLEP(U ) and
SSQ-VEP(U ).

It is worth noticing that LEP can be written in the following equivalent way: find x ∈ U
such that {

φ1(x, y) ≥ 0, ∀y ∈ U,

φ2(x, z) ≥ 0, ∀z ∈ Z(x); (1)

where

Z : SEP1(U ) → 2U , Z(x) = {y ∈ U : φ1(x, y) = 0}.
From (1), if x is a strict solution, then Z(x) = {x}; in particular, the set of the strict

solutions of EP1(U ) is contained in SLEP(U ). If x ∈ EP1(U ), but it is not a strict solution,
then clearly

Z(x) = {y ∈ U : φ1(x, y) ≤ 0},
hence Z(x) is nonempty, compact and convex if we assume that φ1(x, ·) is lower semicon-
tinuous and quasiconvex, for every x ∈ U.

Next results show that the bifunction φ1 and its (generalized) monotonicity properties play
an interesting role in the comparison between LEP and SQ-VEP.

Proposition 1 If φ1 is pseudomonotone, then SLEP(U ) ⊆ SSQ-VEP(U ).

Proof We show that SEP1(U ) ⊆ Z(x), for every x ∈ SEP1(U ). Indeed, fix x∗ ∈ SEP1(U ),

and suppose, by contradiction, that there exists x ∈ SEP1(U ) such that x∗ /∈ Z(x). Then,

φ1(x∗, x) ≥ 0, φ1(x, x∗) > 0.

By the pseudomonotonicity, we get

φ1(x, x∗) ≤ 0,

a contradiction. From (1), the result follows. �

It is worthwhile noticing that the condition Z(x) ⊆ SEP1(U ) for every x ∈ U is sufficient

to entail the reverse inclusion SSQ-VEP(U ) ⊆ SLEP(U ). In order to provide a result for the
equivalence of the two solution sets, we need the following
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Definition 1 A bifunction � : X × X → R is said to be

(a) skew-symmetric, if for each pair of points x, y ∈ X , the following equality holds:

�(x, y) + �(y, x) = 0;
(b) pseudo-symmetric, if for each pair of points x, y ∈ X , the following implication holds:

�(x, y) = 0 ⇒ �(y, x) = 0;
(c) pseudomonotone∗, if it is pseudomonotone, and, for each pair of points x, y ∈ X , if

�(x, y) = 0, �(y, x) = 0,

then, for every w ∈ X,

�(x, w) � 0 �⇒ �(y, w) � 0;
(d) cyclically monotone if for every x1, x2, . . . , xn ∈ X, n ∈ N, the following implication

holds:
n∑

i=1

�(xi , xi+1) ≤ 0,

where xn+1 = x1;
(e) cyclically pseudomonotone if for every x1, x2, . . . , xn ∈ X, n ∈ N, the following

implication holds:

∃i ∈ {1, 2, . . . , n}, �(xi , xi+1) > 0 ⇒ ∃ j ∈ {1, 2, . . . , n}, �(x j , x j+1) < 0,

where xn+1 = x1;
(f) pseudoaffine, if both � and −� are pseudomonotone;
(g) pseudo-symmetric∗, if � is pseudo-symmetric and pseudomonotone∗.

Concept (d) extends the well known cyclic monotonicity for mappings. Cyclical mono-
tonicity of a bifunction � can be characterized via the existence of a function φ : X → R

such that

�(x, y) ≤ φ(y) − φ(x),

for every x, y ∈ X (see, for instance, [4]).
Concept (e) extends the one introduced in [5] for mappings. Since the implication holds

for any integer n and, in particular, for n = 2, each cyclically pseudomonotone bifunc-
tion is clearly pseudomonotone. Note that each pseudoaffine bifunction is pseudo-symmetric
and any skew-symmetric bifunction is pseudo-symmetric and pseudomonotone. Next lemma
shows that also cyclical pseudomonotonicity and pseudo-symmetry∗ are related.

Lemma 1 If a bifunction � : U × U → R is cyclically pseudomonotone and pseudoaffine,
then � is pseudo-symmetric∗.

Proof Under the above assumptions � is clearly pseudo-symmetric and pseudomonotone.
Fix a pair of points x, y ∈ X such that �(x, y) = 0, then �(y, x) = 0. Take any point
w ∈ X .

Case 1. If �(x, w) > 0, then taking the triplet x1 = y, x2 = x and x3 = w gives �(w, y) <

0, hence �(y, w) > 0 by pseudoaffinity.
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Case 2. If �(x, w) < 0, then �(w, x) > 0, and taking the triplet x1 = w, x2 = x and
x3 = y gives �(y, w) < 0.

Case 3. If �(x, w) = 0, then �(y, w) �= 0 leads to a contradiction due to Cases 1 and 2
with replacing x and y. �


Notice that the same conclusion holds if −� is assumed to be cyclically pseudomonotone
and pseudoaffine.

Assuming that φ1 satisfies some of the definitions given above, we can show the equiva-
lence between the sets SSQ-VEP(U ) and SLEP(U ).

Proposition 2 If φ1 is pseudo-symmetric∗, then SLEP(U ) = SSQ-VEP(U ).

Proof From Proposition 1, since φ1 is in particular pseudomonotone, we need to show
that SSQ-VEP(U ) ⊆ SLEP(U ). To this purpose, we prove that Z(x) ⊆ SEP1(U ), for every
x ∈ SEP1(U ). Fix y ∈ Z(x). If y ∈ Z(x), then φ1(x, y) = 0; it follows by the assumptions
that φ1(y, x) = 0. By the definition of pseudomonotonicity∗ the inequality

φ1(x, w) ≥ 0, ∀w ∈ U

implies that

φ1(y, w) ≥ 0, ∀w ∈ U.

Therefore, y ∈ SEP1(U ). �

From Lemma 1 and Proposition 2 we easily get the following

Corollary 1 If φ1 is cyclically pseudomonotone and −φ1 is pseudomonotone, or, −φ1 is
cyclically pseudomonotone and φ1 is pseudomonotone, then SLEP(U ) = SSQ-VEP(U ).

In the particular case where φ1(x, y) = 〈A(x), y − x〉, with A : U → X∗, another set
of conditions entails the equivalence of the solution sets of LEP and SQ-VEP. Indeed, under
the assumptions of the following corollary, trivial computations show that any point in Z(x)

is a solution of EP1.

Proposition 3 Assume that A satisfies the following assumptions:

(a) A is pseudoaffine, i.e., both A and −A are pseudomonotone;
(b) A is pseudomonotone∗ (according to [6, Sect. 2.2]), i.e., for each pair of points u, v ∈ U,

if

〈A(u), v − u〉 = 0, 〈A(v), v − u〉 = 0,

then there exists µ > 0 such that A(u) = µA(v).

Then SLEP(U ) = SSQ-VEP(U ).

Now we intend to investigate conditions which provide only the inclusion SSQ-VEP(U ) ⊆
SLEP(U ). More precisely, we will utilize distance type properties of the bifunction φ1. In [7,8]
and references therein, existence results for equilibrium problems via the Ekeland variational
principle were proved under the triangular property

�(x, y) ≤ �(x, z) + �(z, y) ∀ x, y, z ∈ U.

Notice that any bifunction satisfying this property is the opposite of a cyclically monotone
bifunction (see [7]).
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Several examples of bifunctions satisfying the triangular property are given e.g. in [8].
Nevertheless, in the particular case where �(x, y) = 〈A(x), y − x〉 with A : U → X∗, the
triangular property becomes

〈A(z) − A(x), y − z〉 ≥ 0 ∀ x, y, z ∈ U,

which seems rather restrictive. For this reason, we now introduce the essentially weakened
property.

Definition 2 A bifunction � : X × X → R is said to be a weak pseudo-distance, if for each
triplet x, y, z ∈ X , there exist numbers α > 0 and β > 0, which may depend on x, y, and z,
such that the following implication holds:

�(x, y) ≥ 0 �⇒ α�(x, z) + β�(z, y) ≥ 0.

Proposition 4 If φ1 is a weak pseudo-distance, then SSQ-VEP(U ) ⊆ SLEP(U ).

Proof In fact, it suffices to prove that Z(x) ⊆ SEP1(U ) for every x ∈ SEP1(U ). Fix z ∈ Z(x),
then φ1(x, z) = 0 and, for each y ∈ K , it holds that

φ1(x, y) ≥ 0.

It follows by the assumptions that

φ1(z, y) ≥ 0.

Therefore, z ∈ SEP1(U ). �


3 Existence results

The direct investigation of a lexicographic equilibrium problem is not an easy task. Quite
strong assumptions entail the nonemptiness of SS-VEP(U ), and, as a matter of fact, every
LEP is solved by any solution of the S-VEP. In [9], for instance, the authors proved existence
results for the S-VEP where a monotone family of bifunctions is involved.

In this section, we are interested in finding weaker conditions that ensure the nonempti-
ness of SLEP(U ). By the results of the end of Sect. 2, a possible approach for the existence
of solutions of LEP can be provided via the analysis of the solutions of SQ-VEP, under the
assumptions of Propositions 2–4.

Several authors studied sequential problems, especially exploiting its relation with reg-
ularization methods; see, for instance, [10] and the references therein. Chadli et al. [11]
obtained conditions for the existence of solutions of a sequential equilibrium problem via a
viscosity argument under quite strong conditions.

In this section, we assume that U is a nonempty compact convex subset of a topological
Hausdorff vector space X , unless otherwise stated. We utilize here this compactness assump-
tion only for the sake of simplicity of exposition. In the existence results it can be replaced by
the previous closedness of U and the corresponding coercivity condition; see e.g. [1,12,13]
and references therein.

Observe that the set SSQ-VEP(U ) is nonempty if SEP1(U ) is nonempty, convex, and com-
pact and SEP2(U ) is nonempty. Therefore, we should utilize suitable existence results for
scalar equilibrium problems.

Let us consider the scalar EP: find x ∈ U such that

�(x, y) ≥ 0 ∀y ∈ U, (2)
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where � : U × U → R is an equilibrium bifunction and denote by U∗ its solution set.
We also need some additional definitions. First we recall some generalized convexity and
continuity properties of scalar functions.

Definition 3 A function f : X → R is said to be

(a) quasiconvex, if for each pair of points x ′, x ′′ ∈ X and for all α ∈ [0, 1], we have

f (αx ′ + (1 − α)x ′′) ≤ max{ f (x ′), f (x ′′)};
(b) semistrictly quasiconvex, if for each pair of points x ′, x ′′ ∈ X such that f (x ′) �= f (x ′′)

and for all α ∈ (0, 1), we have

f (αx ′ + (1 − α)x ′′) < max{ f (x ′), f (x ′′)};
(c) lower semicontinuous, if the lower level set

lev≤α f = {x ∈ X : f (x) ≤ α}
is closed, for every α ∈ R;

(d) lower hemicontinuous if its restriction on the line segments of X is lower semicontin-
uous, i.e.,

lim inf
t↓0+ f (x + t (y − x)) ≥ f (x), ∀x ∈ X.

A classical result by Karamardian entails that every lower semicontinuous and semistric-
tly quasiconvex function is quasiconvex. Moreover, a function f is said to be, respectively,
quasiconcave, semistrictly quasiconcave, upper semicontinuous, upper hemicontinuous if
− f is quasiconvex, semistrictly quasiconvex, lower semicontinuous, lower hemicontinuous.

Well-known results about existence of equilibria and properties of U∗ are based on con-
vexity and monotonicity assumptions on the bifunction �. On this subject, we would like to
recall one of the former results by Brézis et al. (see [14, Application 2]), where it is proved
that U∗ is nonempty, convex, and compact assuming the following set of conditions:

(A1) � is pseudomonotone, �(x, ·) is semistrictly quasiconvex and lower semicontinuous
for each x ∈ U, �(·, y) is upper hemicontinuous for each y ∈ U.

Taking into account Proposition 2 and Lemma 1, we obtain the following existence result
for SQ-VEP and LEP:

Theorem 1 Assume that the bifunctions φ1 and φ2 satisfy the conditions in (A1) as �. Then
the set SSQ-VEP(U ) is nonempty, convex, and compact. If, in addition, φ1 satisfies one of the
following assumptions:

(a) φ1 is pseudo-symmetric∗,
(b) −φ1 is cyclically pseudomonotone,
(c) φ1 is cyclically pseudomonotone and −φ1 is pseudomonotone;

then SLEP(U ) = SSQ-VEP(U ).

It is worthwhile noticing that conditions appearing in (A1) are quite strong; indeed, they
provide the equivalence between EP and its dual problem defined as follows: find y ∈ U
such that

�(x, y) ≤ 0 ∀x ∈ U.

In particular, as a by-product, they give also the compactness and the convexity of the
solution set.
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To the aim of weakening some of the assumptions in (A1), several results can be found in
literature; most of them provide only existence and compactness results for EP. Let us first
recall the following generalized monotonicity property:

Definition 4 A bifunction � : X × X → R is said to be properly quasimonotone if, for
every finite set A ⊂ U , and for every x ∈ co(A), it holds that maxy∈A �(x, y) ≥ 0.

In [15] some sufficient conditions implying proper quasimonotonicity of a bifunction are
proved; we recall two of them:

(1) �(x, ·) is quasiconvex, for every x ∈ X;
(2) �(·, y) quasiconcave, for every y ∈ X, and −� pseudomonotone.

The following set of conditions entail existence and compactness of U∗ (for further weak-
enings see, also, [12]):

(A2) �(x, ·) is properly quasimonotone for each x ∈ U, �(·, y) is upper semicontinuous
for each y ∈ U.

Notice that the proper quasimonotonicity in (A2) can be replaced by one of the conditions
(1) or (2).

In order to get also convexity of the equilibria, we need to assume, in addition,
(A3) �(·, y) is quasiconcave.
Combining the previous conditions we get next result:

Theorem 2 Assume that the bifunction φ1 satisfies the conditions in (A1), or, otherwise,
(A2) and (A3), and φ2 satisfies the conditions in (A2). Then the set SSQ-VEP(U ) is nonempty
and compact. If, in addition, φ1 is a weak pseudo-distance, then SSQ-VEP(U ) ⊆ SLEP(U ).

Otherwise, if φ1 satisfies one of the following assumptions:

(a) φ1 is pseudo-symmetric∗,
(b) −φ1 is cyclically pseudomonotone,
(c) φ1 is cyclically pseudomonotone and −φ1 is pseudomonotone;

then SLEP(U ) = SSQ-VEP(U ).

In an Euclidean setting, another set of sufficient conditions for existence and compact-
ness of the solutions involve distance type properties of the bifunction � (see [7], and the
references therein):

(A4) � possesses the triangle property, �(x, ·) is lower semicontinuous for each x ∈ U,
�(·, y) is upper semicontinuous for each y ∈ U .

Notice that this kind of conditions does not require any convexity of the domain. Within
this framework, we have the following result:

Theorem 3 Assume that U is a nonempty compact subset of on Euclidean space X, the
bifunctions φ1 and φ2 satisfy the conditions in (A4) as �. Then the set SSQ-VEP(U ) is non-
empty and compact and SSQ-VEP(U ) ⊆ SLEP(U ).

Again, we can combine the assumptions on φ1 and φ2 from Theorems 2 and 3, if necessary,
to obtain the existence results for SQ-VEP and LEP.

A class of functions φ satisfying the assumptions in (A1) can be built up as follows. Let
h : X → R be a semistrictly quasiconvex and lower semicontinuous function, and g : R → R

be an increasing, lower semicontinuous function such that g(0) = 0. Define

φ(x, y) = g(h(y) − h(x)) : X × X → R.

It is a straightforward exercise to show that φ satisfies all the assumptions in (A1). Indeed:
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(1) φ is pseudomonotone, since g(h(y) − h(x)) > 0 is equivalent to h(y) − h(x) > 0,

implying that h(x) − h(y) < 0, and, by the assumptions, g(h(x) − h(y)) < 0 (it is
worthwhile to notice that also −φ is pseudomonotone);

(2) φ(x, ·) is semistrictly quasiconvex for every x ∈ X, since h(·) − h(x) is semistrictly
quasiconvex, and g is increasing (see [16], p. 154);

(3) φ(x, ·) is lower semicontinuous for every x ∈ X ; indeed,

lev≤αφ(x, ·) = {y ∈ X : h(y) ∈ h(x) + g−1(−∞, α]},
that is closed for every α, since h is lower semicontinuous and, by the assumptions on
g, g−1(−∞, α] = (−∞, β], for a suitable β ∈ R.

(4) φ(·, y) is upper hemicontinuous for every y ∈ X; indeed, in this case, φ(·, y) is even
upper semicontinuous.

Moreover, the function φ(x, y) = g(h(y) − h(x)) is also pseudo-symmetric∗ : it is triv-
ial that φ(x, y) = 0 implies φ(y, x) = 0; furthermore, since φ(x, y) = 0 if and only if
h(x) = h(y), we obtain immediately the pseudomonotone∗ assumption.

Another class of functions that satisfy assumptions in (A1) can be recovered by taking
φ(x, y) = h(y − x), where h : X → R is a semistrictly quasiconvex and lower semicontin-
uous function such that:

(a) h(t) > 0 implies h(−t) < 0;
(b) h(0) = 0.

Moreover, the function −φ is cyclically monotone (and, therefore, cyclically pseudo-
monotone) if there exists a function k : X → R such that

h(y − x) ≥ k(x) − k(y).

An interesting application of the previous results can be given in the setting of the theory
of nontransitive consumer (see [17,18]).

We recall that the preference R of a nontransitive consumer can be expressed by a skew-
symmetric representation function r : R

+
l × R

+
l → R such that

x Ry ⇐⇒ r(x, y) ≥ 0.

Two commodity bundles x and y are indifferent (x I y) if and only if r(x, y) = 0, while x
is strictly preferred to y (x Py) if and only if r(x, y) > 0. It is well known that I is an equiva-
lence relation. Usual demands on the bifunction r are its concave–convexity, together with its
continuity. The assumptions in (A1) are therefore fulfilled. Another reasonable assumption
on r is the following: if x I y, then

x Pw ⇐⇒ y Pw,

i.e., if r(x, y) = 0, then

r(x, w) > 0 ⇐⇒ r(y, w) > 0.

In particular, the equivalence above entails that r is a pseudomonotone∗ bifunction.
Given the budget set B(p, w) = {x ∈ R

+
l : xp ≤ w}, x∗ is an optimal demand if and

only if x∗ solves the equilibrium problem

r(x∗, x) ≥ 0, ∀x ∈ B(p, w).

One can argue that the results in Theorem 1 can be applied to multicriteria problems as
well as to social choice.
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